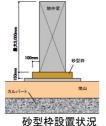
■工法概要

免震ピット内のEVピットスラブ底や梁底にクリアランスの設置が必要ではあるが、型枠支保工の設置をするほどのスペースが無い場合にボイドを支保工 代わりに設置する工法。

砂型枠やスタイロフォーム等で対応する場合に比べて、精度管理・撤去が比較的容易である。

■写真・イメージ・図面

ロボイド型枠 施工例



口砂型枠 施工例

■特徴・適用条件・注意事項 等

【品質】

・ピットスラブやレベルコンクリート上に、支保工の代わりに高さをそろえたボイドをセットするだけのため、砂型枠よりもレベル管理が容易。

下端レベルの精度管理においては、基準コンクリート、ボイド設置スラブ面の管理が重要。

効 果

メリット

特徴

【工程】

・砂型枠(スタイロフォーム)よりも撤去が容易で、撤去時間短縮が可能。

【コスト】

・砂型枠に比べて、搬入・撤去手間が削減可能。

適用条件 型枠支保工が設置できない低い高さの支保工が必要な場所。

特 許 特許第6402027号 (鹿島建設(株)) 202207追記

メーカー等なし

備考

- ・ボイドの強度確認が必要。
- ボイド高さが高くなる場合は水平力の検討が必要。

■検索用分類

検討時期	部位∙種別	着眼点	効果	職種
□ Phase0(営業)	☑ 仮設	□ 繰り返し作業	☑ Q	□ 鳶工
☐ Phase1(企画)	✓ 基礎	✓ 工程数削減	□ C	▽ ±エ
☐ Phase2(基本設計)	✓ 躯体(RC)	□ 標準化・モジュール化	✓ D	□ 鉄筋工
☐ Phase3(実施設計)	■ 躯体(S)	☑ 省人化	S	☑ 型枠工
✓ Phase4(施工準備)	□ 外装	☐ IT化·高効率化	□ E	□ 左官工
☑ Phase5(施工)	□ 内装	□ 工場製品化・PCa化		□ 鍛冶工
	□ 外構	□ ユニット化		□ 金属工
	□ 設備	□ 機械化		□ 内装工
	□ IT化	□ 多能工化・共業化		□ 電工
	□ 特殊構工法	■ VE·設計変更		□ 配管工