No. 05-025-2012作成

新築/外構·景観 病院

発注者 特定医療法人 群馬会

設計·監理 KAJIMA DESIGN

(株)ランドスケープデザイン 〈造園〉

鹿島建設 施工

カテゴリー

A. 環境配慮デザイン B. 省エネ・省CO₂技術 C. 各種制度活用 D. 評価技術/FB

F リニューアル F. 長寿命化 G. 建物基本性能確保 H. 生産・施工との連携

I. 周辺・地域への配慮 J. 生物多様性 K. その他

自然環境を重視した治癒的環境の創出

イングリッシュガーデンを中心とした庭園の創出

465床の精神科病院の建替計画である。「精神科において は病棟が最大の治療用具である」との言葉があるが、患者 の見当識確保を支援するため時間・空間認識をサポートす る空間づくりを行った。

外部空間としては、既存建物の解体跡地を患者やスタッフ の憩いの場として「庭」とした。設計に当たっては顧客や 造園設計者と様々な対話を繰り返し、新病棟建設予定地に あったケヤキの大木を移植し庭のシンボルとした。それ以 外にもクスノキ等既存樹を多く移植し、既存のコンテクス トを意識すると共に、新たなコンセプトとしてスピリチュ アルな空間、ヒーリングの場とすべくイングリッシュガー デンや水盤を中心とした静謐な空間となる庭園をつくっ た。運営面においても、専任ガーデンプランナーを病院が 雇用し季節ごとの花きの手入れ、植替え等を行い、庭が成 長しつづける環境を整えた。これらの庭は今後、園芸療法 にも活用予定であり、患者の憩いの場であると同時に比類 のない治療の場となっている。

内部空間においても外部との連続性を重視し、施設全体に おいて自然に触れられる、時刻や季節の変化を感じられる ような空間づくりを考慮した計画とした。

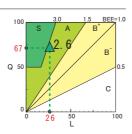
イングリッシュガーデン越しの新病棟

渡り廊下と奥に見える水盤

建物データ

群馬県高崎市 所在地 竣工年 2011 年 敷地面積 22. 628m²

延床面積 16. 183m² 構造 RC造一部S造 階数 地上5階


省エネルギー性能

PAL削減 ERR (CASBEE準拠)

17 % Aランク BEE=2. 6 28 %

2008年度版 自己評価

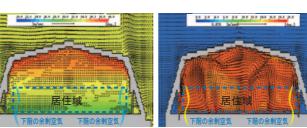
CASBEE評価

半屋外テラス -閉鎖病棟でも外気に触れられる場-

閉鎖病棟の患者が安全にかつ自由に外気に触れられる空間と して半屋外テラスや中庭を設置した。単調になりがちな病棟 の外壁面を分節する半屋外テラスは患者の憩いの場や物干場 として活用されている。

外壁を分節する半屋外テラス

半屋外テラス デイコーナー越しの半屋外テラス


アリーナの簡易空調システム - 下階の余剰空気活用-

アリーナは下階の余剰空気を利用した簡易空調を行った。 3階の空調された空気の一部をアリーナ経由で排気すること で、アリーナの居住域の環境向上を目指した。設計段階でシ ミュレーションを行い、完成後も検証を行い効果を確認した。

床下ダクト

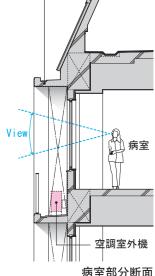
アリーナ

温度シミュレーション(左:夏期、右:冬期)

設計扣当者

統括:植野糾/建築:演野拓微、郡明宏、高野信 /構造:畠本斉、大井英之、

設備:小林直樹、谷泰文、飯田純


浩園:(株)ランドスケープデザイン 三木正

段差バルコニー - 日除け効果と眺望の両立-

設備の室外機置場、日除け、メンテナンス性の容易さを考慮し てPC製のバルコニーを設置した。病室からの眺望も考慮し、バ ルコニースラブのレベルを下げることで室外機や手摺による視 線の妨げない計画とした。

病室からの眺望

室外機の設置

病室部分断面

- 日除けとしての庇

室外機散水システム -冷房時の運転効率向上-

冷房時にパッケージエアコン屋外機に散水することで、屋外機 の冷却効率を上げ、省エネルギー性の高い計画とした。シミュ レーションでは、ランニングコストとして年間50~80万円程度 削減効果があることを確認した。

散水中の室外機

サーモカメラによる検証

井水有効利用 一水資源の循環ー

外構の水盤は井水を利用。水盤の水は循環ろ過をせずに浸透桝 を経由してイングリッシュガーデン、ケヤキの森の地下へ還し ている。また、外構散水も井水利用の計画とした。

井水を利用した水盤

主要な採用技術(CASBEE準拠)

- 02. 3. 対応性・更新性(荷重のゆとり、メカニカルバルコニー、設備の更新性)
- 生物環境の保全と創出(外構緑化、建築緑化、地域の郷土種への配慮)
- まちなみ・景観への配慮(建物配置や形態のまちなみとの調和、歴史性の継承、新たなシンボルの形成) Q3. 2.
- LR1. 1. 建物の熱負荷抑制(庇の深い外装)
- LR1. 3. 設備システムの高効率化(室外機散水、タスク空調、LED照明)
- LR2. 2. 非再生性資源の使用量削減 (躯体のPC化)

サステナブル建築事例集/社団法人日本建設業連合会 ※本事例シートおよび記載内容の二次利用を禁止します