ガーデニエール砧ウエスト

No. 10-027-2013作成 新築

集合住宅

発注者 清水建設株式会社

設計·監理

清水建設株式会社一級建築士事務所

施工 清水建設株式会社 カテゴリー

A. 環境配慮デザイン B. 省エネ・省CO₂技術 C. 各種制度活用 D. 評価技術/FB

F リニューアル F. 長寿命化 G. 建物基本性能確保 H. 生産・施工との連携

I. 周辺・地域への配慮 J. 生物多様性 K. その他

いつまでも活力を維持する街の提案

地域をつなぐ、人をつなぐ

建物は371戸の賃貸に、保育所、診療所及び集会室を 併設する。

東側のガーデニエール砧(2008年竣工)と合わせると、 総戸数は641戸となり、近郊住宅街での民間賃貸事業と しては例のない大規模な計画である。

この建物では、居住者のコミュニケーションを誘発する 千鳥掛の住棟形式により、下町の路地空間のような、 居住者の簡単な会話やあいさつのきっかけをもたらす ハーフコモンを各階に設けた。

住戸は異なる規模の住戸を向かい合わせ、同じフロアに 幅広い世代が同居する仕組みを与えることで、建物の 老朽化と共に居住者も高齢化を迎える、という集合住宅 の抱える問題に対する一つの提案とした。

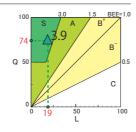
地域との共存を目指した配置計画

戦前から唯一残る黒松の大木をはじめ、既存樹木は腐朽 の進んだ数本を除き全て保存し、「地域の愛着」に応え 「土地の記憶」を継承した。新に設けた敷地中央の広場 には、地域の植生に適切な樹木による「未来の森」を 創った。敷地外周の既存樹木と、中央の新しい緑の対比 により過去と未来をつなぎ、その間に建築を置いた。 貫通通路や各所のボイドにより、外周と中庭をつない だ。貫通通路と外周の歩道は全て一般に解放し、敷地内 に全長1100mの歩行者空間を生み出すことで、地域との 共生を目指した。

住棟の間に一層置きにハーフコモンを設置

昭和40年代の清水建設砧社宅 2つのエントランスと貫通通路

建物データ


構造

東京都世田谷区 所在地 2013 年

竣工年 敷地面積 12. 564m² 32. 172m² 延床面積

RC造 階数 地下1階、地上10階 CASBEE評価

Sランク BEE=3. 9 2010年度版 第三者認証

建築とランドスケープが一体化となった断面構成

建築に千鳥状にボイドを多数設けることで、建物の圧迫感 を低減し、地域の風を遮断しないよう対応し、ボイドには 植栽を設け、ランドスケープと建築に連続性を与えた。

計画地は日影規制に建物絶対高さ制限45m規制がかけられ た地域であるが、中廊下形式を応用した、千鳥形式の住棟 とすることで、風の通り道を設け、オープンスペースを確 保しながら、地域に配慮し、32mに建物高さを抑えると同 時に、事業上の要請(容積の確保)に応えた。

時代の多様性に応える住棟構成と住戸

建築の最大の特徴はモデュール化された千鳥掛け形式の 住棟構成である。

豊かな住空間の創出を前提に、建築のモデュール化の中 で、これからの時代に求められる住まいの形を模索した。 現代人はあまり濃密なコミュニティは望んでいない。しか し簡単な会話や、笑顔のあいさつ、といった隣近所との 最低限のつながりの必要性を、特に震災後多くの人々が 認識したのではないか。そのようなFace to Faceを可能と する集合住宅を目指した。

モデュール化による合理性・汎用性の確保

基本モデュールを17.5m幅とし、専有部の主開口面に耐震 要素の全く無い、スクウェアな居住空間となる架構形式と した。中廊下を挟み基本モデュールを背合わせに配置し、 免震壁構造とすることで、地震力に対する剛性と耐力を 建物各部で確保し、一見複雑な形態をEXP. Jなしで実現で きる構造システムとした。構造部材と共に、建築・設備 要素も含めたトータルなモデュール化により、合理性と 汎用性の確保された建築として成立させた。

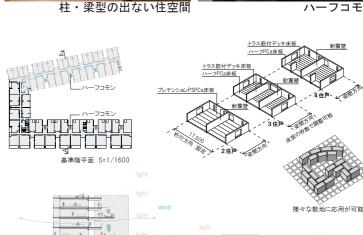
ecoLCP集合住宅

この建物は、阪神淡路大震災・東日本大震災の経験を生かし、 平常時の環境対策 (eco) と非常時の生活維持機能 (LCP: Life Continuity Plan)を有する、安全で環境にやさしい建物である。 電力ひっ迫時には、これまで難しいとされてきた専有部のエア コン制御など、一歩踏み込んだ省エネ提案を実現させた。

LCP 生活維持

ライフライン断絶防止対策 防災マネジメント 安全安心な建物

Energy Management


自然エネルギー利用 太陽光発電+蓄電池+太陽熱利用 エネルギーマネジメント シミズスマートBEMS+ー括受電・スマートメータ

建築:井川博英/構造:高橋啓/設備:池澤正道、金沢俊邦/写真撮影:スタジオバウハウス 吉見謙次郎

主要な採用技術(CASBEE準拠)

- 02 2 耐用性・信頼性(設備の信頼性(BCP対応))
- まちなみ・景観への配慮(建物配置や形態のまちなみとの調和、歴史性の継承)
- 自然エネルギー利用(自然換気、自然採光、太陽光発電) LR1. 2.
- LR1. 4. 効率的運用 (BEMS (シミズスマートBEMS))
- 水資源保護 (雨水利用) LR2. 1.
- LR3. 2. 地域環境への配慮(建築緑化)