発注者 株式会社 壽屋

設計·監理 戸田建設株式会社一級建築士事務所

TODA CORPORATION

戸田建設株式会社東京支店 施工

カテゴリー

A. 環境配慮デザイン B. 省エネ・省CO.技術 C. 各種制度活用 D. 評価技術/FB

F リニューアル F. 長寿命化

G 建物基本性能確保 H. 生産・施工との連携

I. 周辺・地域への配慮 J. 生物多様性 K. その他

周辺環境を取り込み、知的生産性向上を目指した本社オフィスビル

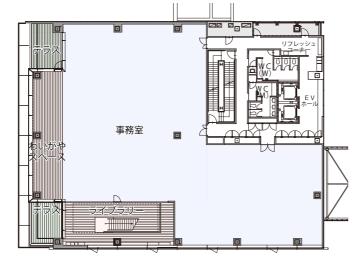
本計画は東京都立川市に建つ模型・フィギュ アやキャラクターグッズなどを扱う地元企 業の本社オフィスビル機能とイベントホー ル、商業施設のある複合用途の建築である。 敷地は約40m幅の歩行者専用道路に面し た眺望の開けた場所に位置し、西側には昭和 記念公園の緑が広がり、その先に富士山、奥 多摩の山々が望める立地となっている。

ワーカーのための

知的生産性向上を目指した執務空間

事務室空間は天井高さ 2700mm を確保し、執 務者が緑豊かな昭和記念公園が望めるよう 開口部を配置した。また創造的な作業の多い この本社ビルにおいては、知的生産性の向上 を目的としたコミュニケーションスペース を計画している。

具体的には眺望の開けたスペースに"わい がやスペース"と2層の吹抜で構成された ライブラリースペースを設け、社内のより深 いコミュニケーションの誘発と発想の場と しての空間を提案している。



ライブラリー

わいがやスペース

4階平面図

17 %

2 %

1 %

CASBEE評価

Aランク

BEE=1.7

2014年度版

自己評価

省エネルギー性能

ERR (CASBEE準拠)

PAL削減

LCCO2削減

建物データ

階数

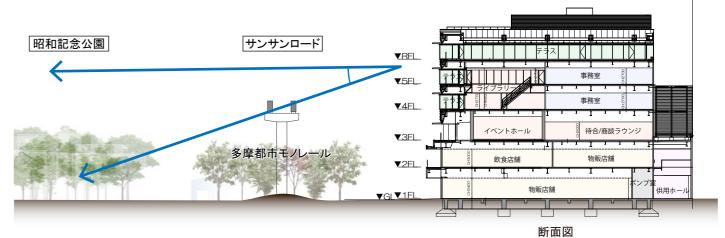
東京都立川市 所在地

地上6階

竣工年 2016 年

敷地面積(所有敷地面積) 1,652 m²

6.086m² 延床面積


構造 S造

外皮性能の向上については景観の開けた西側に開口を開いてい るためガラスはLOW-Eガラスを採用するとともに、太陽高度 の高い時間帯において熱負荷を軽減するために、奥行約 1500mm のPC板による庇を設けている。6階最上階の南側には屋外テ ラスを設け、フルハイトサッシでテラスの外部空間を取り込だ 開放的なオフィス空間を構成しながら、ルーバー庇を設けるこ とにより熱負荷の低減を図っている。

設備計画においては、執務空間に明るさセンサーによる照明制 御を行うことで自然光の有効活用を図り、屋上緑化による熱負 荷の低減、オフィス空間の照明LED化、トイレ照明の人感セン サー対応、節水型トイレの採用、雨水貯留槽の設置など熱負荷の 低減、環境に配慮した計画としている。

6F屋外テラス (昭和記念公園を望む)

省スペース制振構造

環境配慮技術

本建物は、本社機能を有する事務所、店舗及びイベントスペース 等多様な用途が内包されている。建設地周辺には立川断層があ り、BCP(事業継続計画)上の観点から大地震時にも建物機能が維 持できる制振構造を採用した。建物を制振構造化するに当たり、 エレベータシャフトを利用した「省スペースで執務空間の自由 度を最大限確保できる制振構造|を採用した。

階高の高い1~3階は過大な層間変形が生じることが予想され るため、当該階に制振ダンパーを配置し、有効率の求められる4 ~ 6 階のオフィス空間には制振ダンパーを配置しない計画とし ている。

また、エレベータシャフト内に本体架構とは別に「制振フレーム |を設け、その中にダンパーを集中的に配置することで平面計画 の自由度を確保した。さらにエレベータシャフトが平面的に偏 在した位置にあるため、ねじれ挙動への抑制を目的に間柱型制 振ダンパーを併用したシステムとしている。

オフィスフロア ¥4FL その他複合用途 エレベータシャフト内制振フレームと 制振ダンパーの集中配置 偏心調整用 間柱ダンパ-

統括:河野利幸/建築:太田隆司、吉川拓也、平田拓也/構造:桑素彦、今泉祐樹 設備:高橋寿、秋山昌幸、稲田祥之

主要な採用技術(CASBEE準拠)

- 02. 2. 耐用性・信頼性(非常用発電機設置によるBCP対応)
- 対応性・更新性(テナント対応用設備スペースの確保)
- まちなみ・景観への配慮(まちなみとの調和を考えたサイン計画) Q3. 2.
- LR1. 1. 建物外皮の熱負荷抑制 (Low-Eガラス)
- 設備システムの高効率化(LED照明、人感センサー) LR1. 3.
- LR3. 2. 地域環境への配慮(屋上緑化、雨水浸透施設)

省スペース型制振構造