名古屋伏見Kスクエア

施工

No. 05-062-2020作成

新築 事務所

発注者 鹿島建設株式会社

設計·監理 KAJIMA DESIGN

鹿島建設

カテゴリー

F リニューアル

A. 環境配慮デザイン B. 省エネ・省CO₂技術 C. 各種制度活用

D. 評価技術/FB

F. 長寿命化

H. 生産・施工との連携

I. 周辺・地域への配慮 J. 生物多様性 K. その他

設計施工から建物管理プロセスまで、デジタルツール・ロボット活用でスマート化

ベーシックオフィスの追求

G 建物基本性能確保

名古屋伏見ビジネスエリア中心 に建つ中規模テナントオフィス ビルである。可能な限り建築的 な特異点を消す操作により浮か び上がる素型のような建築モデ ルとはどのようなものか。ミニ マルモデルをBIM活用により設計 し、施工生産にデジタル連携さ せる試みを行った。敷地の持つ ポテンシャルをもって事業性を 最大化させるテナントビルの命 題を自然体で受け入れ、オフィ スの今日的な設計作法を是と し、精緻なオフィスビルを創り 上げた。外装はダブルコーティ ングLow-Eガラスにより、BPI値は 0.76を実現。太陽光自動追尾型 全自動電動ブラインドを全館実 装する。存在感を消すがごとく 設計されたオフィスは、その結 果として、名古屋の都市景観に 新しく清廉なファサードをもた らすこととなった。

CASBEE評価

Aランク

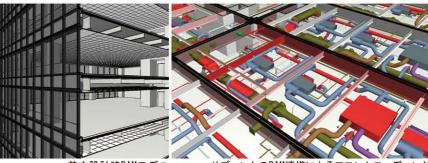
BEE=2. 7

2016年度版

自治体提出

オフィスインテリアの木質化

持続可能な社会づくりの一環 として国内森林材の健全な育 成とC02削減を目的に、岐阜県 産ヒノキ無垢材をオフィスビ ルに内包させ炭素固定を図っ た。エントランスホール、基 準階共用部のインテリアにヒ ノキ無垢材を繊細なデザイン を用いて設えを行った。天然 のヒノキを素材のまま用いる ことにより自然材のもつ優美 さを建築に表現している。


エントランスホールのヒノキ材

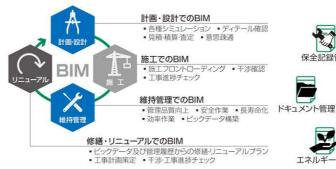
建物データ 所在地 愛知県名古屋市 2019 年 竣工年 敷地面積 1, 828m² 16.891m² 延床面積 構造 S造(柱CFT) 階数 地上13階

省エネルギー性能 RPI 0.76 BEI 0.78 LCCO2削減 19%

Q 5

基本設計時BIMモデル

サブコンとのBIM連携によるフロントローディング


ロボット化技術 鉄骨溶接ロボット 外装取付アシストマシン コンクリート押えロボット 耐火被覆吹付ロボット コンクリート押え自動化 • 溶接自動化 ■ 耐火被覆吹付自動化 取付アシスト ■ 労務不足改善 労務環境改善 ■ 労務削減 上向き溶接・柱全周溶接の適用 アタッチメント開発

遠隔管理技術

計画·管理技術

科 労務・コスト管理 保全記録管理 在庫·備品管理 中央監視·外部SYS連携 意匠 設備 BIM-FMシステム Intデータ

設計担当者

統括:小西啓之 /建築:松岡良樹 /構造:尾池一仁、飯島亮 /設備:高田精治、村井真二郎、池田紗英子

主要な採用技術(CASBEE準拠)

(全フロア制振装置採用) Q2. 2. 耐用性 • 信頼性 Q3. 2. 地域環境への配慮 (タワーパーキング駐車場150台) LR1. 1. 建物外皮の熱負荷抑制 (高性能Low-Eガラス) LR1. 4. 効率的運用 (BEMSの採用・BIM/FM連携) LR2. 2. 非再生性資源の使用量削減 (地域産ヒノキ建材の採用)

BIM活用による高密な3次元設計 狭小地、低階高でのオフィス空 間最大化+高レンタブル比実現 のため、基本設計段階におい て、施工性・設備運用を踏まえ ながら、高密度な納まりをASEM 統合BIM (ArchiCAD)により3D検証 し、徹底した無駄のない空間づ くりを実現をした。

スマート生産

カメラ・センサー・駆動モーター 制御等の固有技術と、それらを統 合するネットワーク、ICT技術の 飛躍的な進歩は、建設業の生産現 場においてもイノベーションをも たらしている。施工プロセスでは 「作業の半分はロボットと」「す べてのプロセスをデジタルに」 「管理の半分は遠隔で」をスロー ガンに、建設就業者不足への対応 や、働き方改革の実現にむけて、 鉄骨溶接ロボット、外装取付けア シストマシンなど各種の施工ロ ボットや新しいデジタル現場管理 ツールなどを採用し、次世代型生 産システムを適用。施工時におけ る省力化・管理品質の高度化を実 現した。

設計施工BIMのFM連携

建設時の設計施工BIMデータに設 備機器情報・管理記録情報など をリンクさせ、建物の維持管理 BIM (FM連携BIM) を試行させた。 これにより、建設ライフサイク ルをデジタル化管理し、維持管 理時の次世代型ビル管理システ ムの運用を開始。更なる効率的 な建物運用の「見える化」が期 待されている。